Publications

The main goal of the Green Brain project was to make a significant contribution to the scientific community, therefore it is important to share and disseminate outcomes to researchers and the public alike. All publications and models are posted here.

On

Journal articles

Cope A., Sabo C., Gurney K., Vasilaki E., and Marshall J. A. R. (2016), A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee PLoS Computational Biology.

Yavuz, E., Turner, J. and Nowotny, T. (2016), GeNN: a code generation framework for accelerated brain simulations, Scientific Reports, Nature Publishing Group, vol. 6,  18854.

Berdan, R., Vasilaki, E., Wei, S. L., Khiat, A., Indiveri, G., Lim, C., Salaoru, I. and Prodromakis, T. (2016), Emulating short-term synaptic dynamics with memristive devices, Scientific Reports, Nature Publishing Group, vol. 6, 18639.

Wu G., Nowotny T., Chen Y. and Li D. (2016) GPU acceleration of time-domain fluorescence lifetime imaging, Journal of Biomedical Optics.

Barron A. B., Gurney K. N., Meah L. F. S., Vasilaki E. and Marshall J. A. R. (2015), Decision-making and action selection in insects: inspiration from vertebrate-based theories, Frontiers in Behavioral Neuroscience, 9:216.

Esposito U., Giugliano M. and Vasilaki E. (2015), Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity, Frontiers in Computational Neuroscience, 8:175.

Caballero J.A., Lepora N.F. and Gurney K.N. (2015) Probabilistic Decision Making with Spikes: From ISI Distributions to Behaviour via Information Gain. PLoS ONE.

Vasilaki, E. and Gugliano, M. (2014), Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-term Plastic Synapses, PLoS ONE, 9(1): e84626.

Serrano E., Nowotny T., Levi R., Smith B.H. and Huerta R. (2013) Gain control network conditions in early sensory coding, PLoS computational biology.

Nowotny T., Rospars J-P., Martinez D., Elbanna S. and Anton S. (2013) Machine learning for automatic prediction of the quality of electrophysiological recordings, PLoS ONE.


Conference papers

C. Sabo, A. Cope, K. Gurny, E. Vasilaki, and J. A. R. Marshall, Bio-Inspired Visual Navigation for a Quadcopter using Optic Flow AIAA Infotech@Aerospace, San Diego, January, 2016, .

A. Simpson and C. Sabo, Quadcopter Obstacle Avoidance using Biomimetic Algorithms AIAA Infotech@Aerospace, San Diego, January, 2016, .


Conference posters and presentations

A. Cope, C. Sabo, E. Vasilaki, K. Gurney, J. Marshall, A neural model of the optomotor system accounts for ordered responses to decreasing stimulus spatial frequencies&稼恢壊沿;BMC Neuroscience, Computational Neuroscience Meeting, Vol. 16, Suppl 1, p. 159, Prague, July, 2015,.

E. Yavuz, P. Maul, and T. Nowotny, Spiking neural network model of reinforcement learning in the honeybee implemented on the GPU BMC Neuroscience, Computational Neuroscience Meeting, Vol. 16, Suppl 1, p. 181, Prague, July, 2015. 

T. Nowotny, J. Turner, and E. Yavuz, More flexibility for code generation with GeNN v2.1BMC Neuroscience, Computational Neuroscience Meeting, Vol. 16, Suppl 1, p. 291, Prague, July, 2015. 

E. Yavuz and T. Nowotny, A modelling framework for the olfactory system of the honeybee using GeNN (GPU-enhanced neuronal network simulation environment) Flavour, Odor Space Conference, Vol. 3, Suppl 1, p. P23, Hannover, September, 2014.

T. Nowotny, C. G. Galizia and P. Szyszka, Stimulus-onset asynchrony can aid odor segregationFlavour, Odor Spaces Conference, Vol. 3, Suppl 1, p. P12, Hannover, September, 2014.

E. Yavuz, J. Turner and T. Nowotny, Simulating spiking neural networks on massively parallel graphical processing units using a code generation approach with GeNN, Bernstein Conference, Goettingen, September 2014. 

C. Sabo, Bio-Inspired Visual Navigation of a Quadcopter using Optic Flow, World Congress on Unmanned Systems Engineering, Oxford, July 2014.

O. Merry and C. Sabo, Using Optic Flow for Navigation of an Autonomous Quadcopter, World Congress on Unmanned Systems Engineering, Oxford, July 2014.

T. Nowotny, A. J. Cope, E. Yavuz, M. Stimberg, D. F. Goodman, J. Marshall, and K. Gurney, SpineML and Brian 2.0 interfaces for using GPU-enhanced neuronal networks (GeNN) BMC Neuroscience, Computational Neuroscience Meeting, Vol. 15, Suppl 1, p. 148, Quebec City, July, 2014.

E. Yavuz, J. Turner, and T. Nowotny, Simulating spiking neural networks on massively parallel graphical processing units using a code generation approach with GeNN BMC Neuroscience, Computational Neuroscience Meeting, Vol. 15, Suppl 1, p. O1, Quebec City, July, 2014.

E. Yavuz, A. Cope, L. Meah, C. Sabo, K. Gurney, J. Marshall, E. Vasilaki, and T. Nowotny, Towards Real-Time Models of Full-Size Insect Brains using GPU-Enhanced Neuronal Network Simulations (GeNN) Invertebrate Neurobiology Workshop, Toulouse, France, May, 2014. 

A. Cope, P. Richmond, J. A. R.Marshall, and D. Allerton, Creating and Simulating Neural Networks in the Honeybee Brain using a Graphical Toolchain Society for Neuroscience Annual Meeting, San Diego, November, 2013, .

A. Cope, C. Sabo, E. Yavuz, K. Gurney, J. Marshall, T. Nowotny, and E. Vasilaki, The Green Brain Project Developing a Neuromimetic Robotic Honeybee Living Machines Conference, London, August, 2013, .